Tom Keelin 650.465.4800 (cell) tomk@keelinreeds.com www.metalogs.org

## A Decision Analytic Framework for Bayesian Updating of Probability of Success in Clinical Trials

Probability of Success Interest Group Society of Decision Professionals January 17, 2024

© 2024 by Thomas Keelin. All rights reserved.

#### **Background (I)**

- Metalog Bayesian inference was published as a preprint in 2021.
  - 1,359 downloads, 762 views
- Eric and Shaun inquired as to whether this method could be useful in calculating
  - probability of success (POS) for clinical trials
  - Bayesian updating of POS when new data becomes available



Link: https://osf.io/preprints/osf/xdg5e

### **Example: New Weight-Loss Drug**

| Phase 1 |         |                                                                                   |
|---------|---------|-----------------------------------------------------------------------------------|
| Data    |         | In Phase 1 clinical trials 16 patients lost an average 3 1% of their              |
| WTL %   |         | hody weight after 6 months with minimal side affects                              |
| 1.60    |         | body weight after o months with minimal side enects                               |
| 3.21    |         |                                                                                   |
| 8.11    |         | Phase 2 trials are underway                                                       |
| 1.01    |         |                                                                                   |
| 4.02    |         | <ul> <li>A possible phase 3 trial is being planned</li> </ul>                     |
| 2.67    |         |                                                                                   |
| 3.62    |         | 100 tes stadu stients + 100 sentral nations                                       |
| 5.64    |         | - 100 treated patients + 100 control patients                                     |
| 4.24    |         |                                                                                   |
| 2.22    |         | <ul> <li>"Average weight loss" = Treated patient average weight loss –</li> </ul> |
| 1.87    |         | control group average                                                             |
| 4.61    |         | control group avolago                                                             |
| -0.81   |         |                                                                                   |
| 2.27    |         | - Success: Average weight loss >= 3% (success criterion)                          |
| 0.09    |         |                                                                                   |
| 2       | Control |                                                                                   |
|         | Control | Note: For new we avoid by notherin tests and other statistical success ariteria   |
| 3.1     | Average | Note: For now, we avoid hypothesis tests and other statistical success criteria.  |
| Page 2  |         | © 2024 by Thomas Keelin. All rights reserved.                                     |

age

#### **Questions Posed by Shaun and Eric**

- How can we calculate Phase 3 Probability of Success based on Phase I state of information (Phase 1 SOI)?
- How can we conveniently update this probability based on Phase 2 data (Phase 2 SOI)?
- Under what conditions is this updating procedure Bayesian?

## A natural starting point is to consider our distribution over weight loss for the next patient(s).



## If this distribution were representative of the entire population, Phase 3 probability of success could be conveniently calculated by simulation.



#### If this distribution were representative of the entire population, increasing the number of patients in phase 3 would increasingly guarantee success.



© 2024 by Thomas Keelin. All rights reserved.





# **Based only on Ph 1 SOI, many different distributions over the entire** population are possible.

Possible Entire-Population Weight Loss Distributions for Next Patient (Ph 1 SOI)



© 2024 by Thomas Keelin. All rights reserved.

## How might we generate a probability distribution over entire-population probability distributions (based on a SOI\*)?



#### **Procedure for calculating POS for a given state of information.**

#### POS calculation method

- A. Generate a sample weight-loss distribution from the distribution over parameters of the entirepopulation distribution
- B. Conditional on that distribution, generate an npatient sample of weight loss
- C. Apply success criteria\* to that sample (e.g. Success = Average(B) >= 3% Success Criterion)
- D. Do A-C N times
- E. POS = #Successes/N

\*Success criteria can be *any* function of the patient data (e.g. statistical significance criteria or "more than 50% of patients lost more than 4% of body weight in excess of placebo".)



## Would sampling clinical trials from the "average" entire-population probability distribution be a reasonable shortcut?



# In contrast, creating a distribution of the *means* of the entire-population distributions can provide a good proxy for POS given a state of information.



#### Note: The larger the number of patients in Phase 3, the more reliable is this proxy.

© 2024 by Thomas Keelin. All rights reserved.

#### **Questions Posed by Shaun and Eric**

- How can we calculate Phase 3 Probability of Success based on Phase I state of information (Phase 1 SOI)?
- How can we conveniently update this probability based on Phase 2 data (Phase 2 SOI)?
- Under what conditions is this updating procedure Bayesian?

# Shaun and Eric generated two cases of Phase 2 efficacy data for consideration. No safety concerns were observed in either case.

| Favorable Case | Unfavorable Case |
|----------------|------------------|
| Phase 2 Data   | Phase 2 Data     |
| WTL %          | WTL %            |
| 3.66           | 5.64             |
| 6.13           | 1.41             |
| 4.44           | 4.52             |
| 3.89           | 5.46             |
| 8.00           | 4.72             |
| 2.68           | 5.10             |
| 1.60           | 5.24             |
| 1.34           | 5.80             |
| 5.33           | 2.62             |
| 4.52           | 3.49             |
| 5.03           | 3.12             |
| 3.45           | 5.96             |
| 4.84           | 7.50             |
| 2.71           | -0.70            |
| -3.61          | 5.76             |
| 7.36           | 4.79             |
| 5.27           | -0.02            |
| 5.13           | 2.51             |
| 3.72           | 2.48             |
| 0.25 Control   | 1.15 Control     |
| 3.73 Average   | 2.82 Average     |

© 2024 by Thomas Keelin. All rights reserved.

#### New data enables us to update the distribution over the parameters and POS (I).



Favorable Case

<sup>© 2024</sup> by Thomas Keelin. All rights reserved.

# Updating the mean: An appealing method is to combine *representative* prior data with new data and define the updated mean as the metalog parameters (fit with least squares) of the combined data.



© 2024 by Thomas Keelin. All rights reserved.

#### Updating the mean: What *representative* prior data would we use?

**Option 2: Assess "equivalent** 



© 2024 by Thomas Keelin. All rights reserved.

#### Specifying and updating the covariance matrix is even more convenient.



# In summary, based on these methods, the Phase 3 POS is ~80\% given favorable Ph Phase 2 data.



**Favorable Case** 

<sup>© 2024</sup> by Thomas Keelin. All rights reserved.





© 2024 by Thomas Keelin. All rights reserved.

#### **Questions Posed by Shaun and Eric**

- How can we calculate Phase 3 Probability of Success based on Phase I state of information (Phase 1 SOI)?
- How can we conveniently update this probability based on Phase 2 data (Phase 2 SOI)?
- Under what conditions is this updating procedure Bayesian?

#### These simple, closed form updating methods are Bayesian under certain conditions.

- Target variable distribution in a QPD 1.
- 2. Distribution over parameters is multivariate normal (or multivariate Student t)
- 3. Sample "errors" are normally distributed with standard deviation  $\sigma$ and mean 0.



Quantile function is linear in its parameters\*.



- Likelihood function is a product of normal distributions
- Distribution over parameters is a conjugate prior •
  - $\sigma$  certain -> multivariate normal
  - $\sigma$  uncertain -> multivariate Student t
- Bayesian updating equations simplify to the above procedure.

Caveat: "All models are wrong, but some are useful" (George Box): A small fraction of samples from the distribution over parameters is infeasible. We discard those.

Page 22

© 2024 by Thomas Keelin. All rights reserved.

\*Keelin and Powley, Quantile-Parameterized Distributions, Decision Analysis, 2011.

#### **Questions Posed by Shaun and Eric**

- How can we calculate Phase 3 Probability of Success based on Phase I state of information (Phase 1 SOI)?
- How can we conveniently update this probability based on Phase 2 data (Phase 2 SOI)?
- Under what conditions is this updating procedure Bayesian?

### Thank you!